PPARα- and DEHP-Induced Cancers
نویسندگان
چکیده
Di(2-ethylhexyl)phthalate (DEHP) is a widely used plasticizer and a potentially nongenotoxic carcinogen. Its mechanism had been earlier proposed based on peroxisome proliferator-activated receptor alpha (PPARalpha) because metabolites of DEHP are agonists. However, recent evidence also suggests the involvement of non-PPARalpha multiple pathway in DEHP-induced carcinogenesis. Since there are differences in the function and constitutive expression of PPARalpha among rodents and humans, species differences are also thought to exist in the carcinogenesis. However, species differences were also seen in the lipase activity involved in the first step of the DEHP metabolism, which should be considered in DEHP-induced carcinogenesis. Taken together, it is very difficult to extrapolate the results from rodents to humans in the case of DEHP carcinogenicity. However, PPARalpha-null mice or mice with human PPARalpha gene have been developed, which may lend support to make such a difficult extrapolation. Overall, further mechanical study on DEHP-induced carcinogenicity is warranted using these mice.
منابع مشابه
The effects of di 2-ethyl hexyl phthalate (DEHP) on cellular lipid accumulation in HepG2 cells and its potential mechanisms in the molecular level.
Diethylhexyl phthalate (DEHP) is suspected to be an inevitable factor related to metabolic disease. Our previous study demonstrated that excess DEHP could exacerbate non-alcoholic fatty liver disease (NAFLD) in SD rats. Addressing the terra incognita in DEHP-induced metabolic dysfunction, this study used HepG2 cells to investigate the potential mechanisms involved in DEHP-induced toxicity in vi...
متن کاملComparative time course profiles of phthalate stereoisomers in mice.
More efficient models are needed to assess potential carcinogenicity hazard of environmental chemicals based on early events in tumorigenesis. Here, we investigated time course profiles for key events in an established cancer mode of action. Using a case study approach, we evaluated two reference phthalates, di(2-ethylhexyl) phthalate (DEHP) and its stereoisomer di-n-octyl phthalate (DNOP), acr...
متن کاملFunctional role of phospholipase D (PLD) in di(2-ethylhexyl) phthalate-induced hepatotoxicity in Sprague-Dawley rats.
Phospholipase D (PLD) is an enzyme that catalyzes the hydrolysis of phosphatidyl choline (PC) to generate phosphatidic acid (PA) and choline. PLD is believed to play an important role in cell proliferation, survival signaling, cell transformation, and tumor progression. However, it remains to be determined whether enhanced expression of PLD in liver is sufficient to induce hepatotoxicity. The a...
متن کاملPlasticizers May Activate Human Hepatic Peroxisome Proliferator-Activated Receptor α Less Than That of a Mouse but May Activate Constitutive Androstane Receptor in Liver
Dibutylphthalate (DBP), di(2-ethylhexyl)phthalate (DEHP), and di(2-ethylhexyl)adipate (DEHA) are used as plasticizers. Their metabolites activate peroxisome proliferator-activated receptor (PPAR) α, which may be related to their toxicities. However, species differences in the receptor functions between rodents and human make it difficult to precisely extrapolate their toxicity from animal studi...
متن کاملThe Pollutant Diethylhexyl Phthalate Regulates Hepatic Energy Metabolism via Species-Specific PPARα-Dependent Mechanisms
BACKGROUND The modulation of energetic homeostasis by pollutants has recently emerged as a potential contributor to the onset of metabolic disorders. Diethylhexyl phthalate (DEHP) is a widely used industrial plasticizer to which humans are widely exposed. Phthalates can activate the three peroxisome proliferator-activated receptor (PPAR) isotypes on cellular models and induce peroxisome prolife...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PPAR Research
دوره 2008 شماره
صفحات -
تاریخ انتشار 2008